Über die Affiliate-Links erhalten wir beim Kauf in der Regel eine Provision. Mehr Informationen dazu hier.

Auswahl Aktueller Artikel

Die gegenseitige Information

Überträgt man den Begriff der Entropie einer Zufallsvariable auf die Wahrscheinlichkeitsverteilungen von zwei Zufallsvariablen, so ist es naheliegend die gemeinsame Entropie und die bedingte Entropie einzuführen, die über die Kettenregel miteinander verknüpft sind. Diese wiederum motiviert die Einführung einer neuen Größe, der gegenseitigen Information zweier Zufallsvariablen. Sie ist symmetrisch in den beiden Zufallsvariablen und beschreibt die Information, die in einer Zufallsvariable über die andere Zufallsvariable enthalten ist. An einfachen Beispielen wird die Definition der gegenseitigen Information motiviert und veranschaulicht.

Die bedingte Entropie einer diskreten Wahrscheinlichkeitsverteilung: Definition und einfache Beispiele

Die Entropie wurde eingeführt als ein Maß für die Ungewissheit über den Ausgang eines Zufallsexperimentes. Entsprechend kann man eine bedingte Entropie definieren, wenn man die bedingten Wahrscheinlichkeiten verwendet, wobei man als Bedingung entweder ein Ereignis oder eine Zufallsvariable zulässt. Die Definition der bedingten Entropie und ihr Zusammenhang mit der gemeinsamen Entropie zweier Zufallsvariablen (Kettenregel) wird an einfachen Beispielen erläutert.

Die Additivität der Entropie bei unabhängigen Zufallsvariablen

Akzeptiert man die Entropie als eine Kenngröße einer Wahrscheinlichkeitsverteilung, die die Ungewissheit über den Ausgang eines Zufallsexperimentes beschreibt, so wird man fordern, dass sich bei unabhängigen Zufallsexperimenten die Entropien addieren. Um diese Aussage schärfer formulieren zu können, wird die gemeinsame Entropie H(X, Y) von zwei Zufallsvariablen eingeführt. Es wird gezeigt, dass die übliche Definition der Entropie die Additivitätseigenschaft bei unabhängigen Zufallsvariablen X und Y besitzt.

Veranschaulichung der freien Energie bei einer isochoren Zustandsänderung im TS-Diagramm

Am Beispiel der isochoren Erwärmung werden die Eigenschaften der freien Energie F = U - TS und der gebundenen Energie G = TS erläutert. Speziell wird gezeigt, wie man ihre Veränderung darstellen kann, wenn man vom US-Diagramm zum TS-Diagramm übergeht.

Textverarbeitung mit R: Die Funktionen substr() und substring() zum Extrahieren von Substrings

Die Funktionen substr() und substring() werden eingesetzt, um aus einem String einen Substring zu extrahieren. Dazu müssen die Indizes angegeben werden, wo sich der Substring befindet. In der replacement-Version kann der Substring verändert werden, der Rest des Strings bleibt unverändert. Da die Funktionen vektorisiert sind, kann anstelle einer einzigen Zeichenkette auch ein Vektor von Zeichenketten verarbeitet werden.

Docker-Volumes Verstehen und Einsetzen

Docker-Volumes spielen in Containeranwendungen eine entscheidende Rolle. Sie bieten einen Mechanismus zum Speichern, Verwalten und Zugreifen auf Daten innerhalb von Containern sowie zwischen Containern und dem Host-Computer. Docker-Volumes sind wichtig, um Daten über den Lebenszyklus eines Containers hinaus beizubehalten, Daten zwischen Containern auszutauschen und die Datenintegrität in zustandsbehafteten Anwendungen sicherzustellen.

Grundlagen von Kubernetes mit Spring Boot und Java

In diesem Tutorial werden wir uns mit den Grundlagen von Kubernetes beschäftigen und mit K3D eine einfache Spring Boot Anwendung in einem lokalen Kubernetes-Cluster implementieren. In einem kleinen Glossar haben wir auch einige grundlegende Konzepte im Zusammenhang mit Containerisierung und Kubernetes gesammelt, wie Pods, Services oder Deployments. Es werden grundlegende Kenntnisse in Docker und Java/Maven vorausgesetzt.

Textverarbeitung mit R: Die Funktion paste() zum Zusammenfügen von Vektoren als Erweiterung von paste0()

Die Funktion paste() dient ähnlich wie die Funktion paste0() dazu, mehrere Vektoren in Zeichenketten zu verwandeln, die entsprechenden Komponenten zusammenzufügen (1.Schritt) und diese zu einer einzigen Zeichenkette zusammenzusetzen (2. Schritt). In beiden Schritten kann eine Zeichenkette als Trennungszeichen eingefügt werden (die Argumente sep beziehungsweise collapse). Die Funktion paste0() besitzt kein Argument sep; für Aufgaben, die sich auch mit paste0() erledigen lassen, können dadurch mit paste() einfachere Quelltexte geschrieben werden. Beispiele und Spezialfälle werden erläutert.

Textverarbeitung mit R: Die Funktion paste0() zum Zusammenfügen von Vektoren

Die Funktion paste0() verknüpft entsprechende Komponenten von mehreren Vektoren; die Komponenten werden dazu in Zeichenketten verwandelt. Wird das Argument collapse nicht gesetzt, wird dieser Vektor von Zeichenketten zurückgegeben. Wird das Argument collapse gesetzt (es muss eine Zeichenkette sein), werden die Komponenten zu einer einzigen Zeichenkette zusammengefügt, wobei das Argument collapse als Trennungszeichen eingefügt wird. Typische Anwendungen und Spezialfälle werden erläutert.

Textverarbeitung mit R: Mit format() verwandte Funktionen

Die Funktion format.info() liefert Informationen über den Rückgabewert von format(). Die Funktion formatC() bildet eine Alternative zu format() und mit ihr werden Formatierungsanweisungen ähnlich wie in der Programmiersprache C formuliert. Die Funktion prettyNum() wird von formatC() intern genutzt, um Zahlen zu formatieren.

GPTBot – der Webcrawler von OpenAI

Die neulich veröffentlichte Dokumentation von OpenAI zur Konfiguration von GPTBot für den Zugriff auf Websites hat eine Debatte über die Verwendung von Inhalten und den Rechten am geistigem Eigentum beim Trainieren von KI-Modellen. Die Community von DeviantArt hat sich schon viel früher mit dieser Frage beschäftig und entsprechende noai und noimageai Meta-Tags eingeführt.

Interpretation der Zufallsexperimente Ziehen mit Zurücklegen und Ziehen ohne Zurücklegen durch Pfade auf einem Gitter

Die Zufallsexperimente Ziehen mit Zurücklegen beziehungsweise Ziehen ohne Zurücklegen werden umformuliert in eine Zufallsbewegung auf einem Gitter. Dadurch lassen sich viele Herleitungen besser veranschaulichen. Gezeigt wird dies hier für die Verteilungen der Zufallsvariablen, die die Anzahl der Treffer oder die Wartezeit bis zu einem bestimmten Treffer beschreiben.