Schlagwort: diskrete Zufallsvariable
Die Wahrscheinlichkeitsrechnung ist ein fundamentales Gebiet der Mathematik, das uns hilft, die Unsicherheit in verschiedenen Situationen zu verstehen und zu quantifizieren. Ein wichtiger Begriff in diesem Zusammenhang ist die diskrete Zufallsvariable.
Eine diskrete Zufallsvariable ist eine mathematische Funktion, die jedem möglichen Ergebnis eines Zufallsexperiments eine Wahrscheinlichkeit zuweist. Anders als bei stetigen Zufallsvariablen, bei denen die möglichen Ergebnisse unendlich viele Werte annehmen können, sind die möglichen Werte bei einer diskreten Zufallsvariable endlich oder abzählbar unendlich.
Um die Wahrscheinlichkeiten der verschiedenen Werte einer diskreten Zufallsvariable zu beschreiben, verwenden wir Wahrscheinlichkeitsverteilungen. Diese geben an, wie wahrscheinlich es ist, dass die Zufallsvariable einen bestimmten Wert annimmt. Beispiele für diskrete Wahrscheinlichkeitsverteilungen sind die geometrische Verteilung, die hypergeometrische Verteilung und die Poisson-Verteilung.
Diskrete Zufallsvariablen haben viele interessante Eigenschaften, die uns helfen, ihre statistischen Eigenschaften zu verstehen. Der Erwartungswert einer diskreten Zufallsvariable gibt den Durchschnittswert an, den wir erwarten können, wenn wir das Experiment unendlich oft wiederholen. Die Varianz und die Standardabweichung messen die Streuung der Werte um den Erwartungswert.
Ein weiteres wichtiges Konzept im Zusammenhang mit diskreten Zufallsvariablen ist die Entropie. Die Entropie einer Wahrscheinlichkeitsverteilung gibt an, wie ungewiss oder überraschend die Ergebnisse des Zufallsexperiments sind. Eine höhere Entropie bedeutet, dass die Wahrscheinlichkeiten der verschiedenen Werte gleichmäßig verteilt sind, während eine niedrigere Entropie darauf hinweist, dass einige Werte wahrscheinlicher sind als andere.
Wenn du mehr über diskrete Zufallsvariablen erfahren möchtest, empfehlen wir dir unsere Artikel zu diesem Thema, wie "Die bedingte Entropie einer diskreten Wahrscheinlichkeitsverteilung: Definition und einfache Beispiele" und "Grundbegriffe der Wahrscheinlichkeitsrechnung: Diskrete und stetige Zufallsvariablen". Diese bieten eine detaillierte Einführung in die Konzepte und zeigen praktische Anwendungen auf.
Die Entropie wurde eingeführt als ein Maß für die Ungewissheit über den Ausgang eines Zufallsexperimentes. Entsprechend kann man eine bedingte Entropie definieren, wenn man die bedingten Wahrscheinlichkeiten verwendet, wobei man als Bedingung entweder ein Ereignis oder eine Zufallsvariable zulässt. Die Definition der bedingten Entropie und ihr Zusammenhang mit der gemeinsamen Entropie zweier Zufallsvariablen (Kettenregel) wird an einfachen Beispielen erläutert.
Akzeptiert man die Entropie als eine Kenngröße einer Wahrscheinlichkeitsverteilung, die die Ungewissheit über den Ausgang eines Zufallsexperimentes beschreibt, so wird man fordern, dass sich bei unabhängigen Zufallsexperimenten die Entropien addieren. Um diese Aussage schärfer formulieren zu können, wird die gemeinsame Entropie H(X, Y) von zwei Zufallsvariablen eingeführt. Es wird gezeigt, dass die übliche Definition der Entropie die Additivitätseigenschaft bei unabhängigen Zufallsvariablen X und Y besitzt.
Die geometrische Verteilung kann als Verteilung von Wartezeiten aufgefasst werden, wenn man einen Münzwurf solange wiederholt bis der erste Treffer eintritt: man berechnet die Wahrscheinlichkeiten der Anzahl der nötigen Würfe. Man kann dieses Wartezeitproblem verallgemeinern, indem man nicht bis zum ersten sondern bis zum r-ten Treffer wartet. Die Verteilung dieser Wartezeiten wird berechnet und die Eigenschaften der dabei entstehenden Verteilung wird untersucht.
Die Jensensche Ungleichung liefert eine Abschätzung zwischen der Anwendung einer Funktion auf eine konvexe Kombination beziehungsweise der konvexen Kombination der Funktionswerte. Je nachdem, ob die Funktion konvex oder konkav ist, erhält man ein anderes Ungleichheitszeichen zwischen den genannten Termen. Im Folgenden werden die zum Beweis der Jensenschen Ungleichung nötigen Eigenschaften von konvexen Funktionen erläutert, die Jensensche Ungleichung formuliert und bewiesen und einige Anwendungen gezeigt (Ungleichung zwischen dem geometrischen und dem arithmetischen Mittel, Anwendung der Jensenschen Ungleichung auf Erwartungswerte von Zufallsvariablen).
Die Definition der Entropie eines Wahrscheinlichkeitsmaßes oder einer Zufallsvariable wird an einfachen Beispielen erläutert. Es wird diskutiert, dass die Entropie kein Streuungsmaß ist (wie die Standardabweichung), sondern die Ungewissheit (oder Unbestimmtheit) des Ausgangs eines Zufallsexperimentes beschreibt.
Die Methode, den Erwartungswert einer Zufallsvariable X mit Hilfe von Indikatorvariablen zu berechnen, ist deshalb so wichtig, weil man dazu die Verteilung von X nicht kennen muss. Die eigentliche Schwierigkeit besteht oft darin, geeignete Indikatorvariablen zu finden. An mehreren Beispielen (Münzwurf, hypergeometrische Verteilung und einer Zufallsvariable mit unbekannter Verteilung) wird dieses Vorgehen demonstriert. Da man Varianzen auf Erwartungswerte zurückführen kann, lassen sich mit dieser Methode auch Varianzen und Standardabweichungen berechnen.
Die hypergeometrische Verteilung beschreibt die Wahrscheinlichkeit dafür, dass beim Ziehen ohne Zurücklegen n Treffer aus einer Urne gezogen werden; dazu befinden sich in der Urne anfangs L Treffer und K Nieten und es werden N Lose entnommen. Die Abhängigkeit der Verteilung von den drei Parametern K, L und N erschwert den Zugang zur Berechnung der gesuchten Wahrscheinlichkeiten. Es werden zwei - natürlich gleichwertige - Methoden gezeigt, wie man die Wahrscheinlichkeiten berechnet.
Das p-Quantil als Umkehrfunktion der Verteilungsfunktion und der Spezialfall des Medians als p-Quantil zur Wahrscheinlichkeit p = 0.5 werden vorgestellt.
Die geometrische Verteilung wird verwendet, um Wartezeiten zu modellieren. Die grundlegenden Eigenschaften wie Erwartungswert, Varianz, Standardabweichung, die Verteilungsfunktion und insbesondere der Zusammenhang zur Binomialverteilung und die sogenannte Gedächtnislosigkeit werden besprochen.
Die Funktion sample() wird verwendet, um Stichproben zu erzeugen. Sie lässt sich so konfigurieren, dass man die Wahrscheinlichkeitsverteilungen von beliebigen selbstdefinierten diskreten Zufallsvariablen einsetzen kann. Zudem kann man das Ziehen mit beziehungsweise ohne Zurücklegen realisieren.
Die Faltung von Wahrscheinlichkeitsmaßen ist eine der wichtigsten Begriffsbildungen, um Summen von unabhängigen Zufallsvariablen zu beschreiben, da sich mit ihr viele Eigenschaften von Zufallsvariablen und Wahrscheinlichkeitsverteilungen prägnant formulieren lassen und zahlreiche Bezüge zu anderen (scheinbar entfernten) Begriffen und Aussagen herstellen lassen. In diesem einführenden Kapitel wird auf exakte mathematische Definitionen und Beweise verzichtet, stattdessen soll der Begriff der Faltung an typischen Beispielen motiviert werden.
Nach dem Erwartungswert sind die Varianz und die Standardabweichung (als Wurzel der Varianz) die wichtigsten Kennzahlen einer Verteilung. Ist der Erwartungswert ein Maß für die Lage der Verteilung, beschreiben Varianz und Standardabweichung die Streuung der Werte einer Zufallsvariable um den Erwartungswert. Die Definition und Eigenschaften werden besprochen und an zahlreichen Beispielen erläutert.
Der Erwartungswert einer Zufallsvariable ist die wichtigste Kennzahl, um Ergebnisse von Zufallsexperimenten zu beschreiben. Seine Definition und Eigenschaften werden ausführlich erläutert. An zahlreichen Beispielen wird seine Berechnung vorgeführt; dabei werden nebenbei wichtige Wahrscheinlichkeits-Verteilungen vorgestellt.
Zu den wichtigsten Wahrscheinlichkeitsverteilungen gibt es Funktionen zum Berechnen der Wahrscheinlichkeitsdichte, der Verteilungsfunktion, des p-Quantils und zum Erzeugen von Zufallszahlen. Für ausgewählte Verteilungen (Binomialverteilung, Poisson-Verteilung, kontinuierliche Gleichverteilung und Normalverteilung) werden diese Funktionen vorgestellt. Dabei werden typische Anwendungen aus der Wahrscheinlichkeitsrechnung und Statistik gezeigt, die zugleich einige Eigenschaften dieser Verteilungen illustrieren.
Zufallsvariablen können diskrete oder kontinuierliche Werte annehmen. Die mathematische Beschreibung unterscheidet sich, da die Wahrscheinlichkeiten der Werte der Zufallsvariable entweder mit Folgen oder indirekt über eine Wahrscheinlichkeitsdichte angegeben werden. Diese Beschreibung wird an speziellen Verteilungen demonstriert: diskrete Gleichverteilung, Poisson-Verteilung, kontinuierliche Gleichverteilung, Standard-Normalverteilung.
Die Tschebyscheff-Ungleichung als einfachste Konzentrations-Ungleichung wird aus mehreren Perspektiven beleuchtet: Es werden Beispiele für ihre typische Anwendung besprochen; es wird ein direkter Beweis gegeben; es wird gezeigt, dass sie als Spezialfall der verallgemeinerten Markov-Ungleichung aufgefasst werden kann; es wird diskutiert, wie gut die Abschätzung ist, die sie liefert. In den R-Skripten werden die Berechnungen aus den Anwendungsbeispielen ausgeführt, die man ohne Programmierung kaum bewältigen könnte.
Beim mehrarmigen Banditen oder genauer k-armigen Banditen kann man ein Glücksspiel durch Betätigen eines Armes auslösen. Mathematisch modelliert werden sie durch Zufallsvariablen mit unterschiedlichen Erwartungswerten. Möchte man am k-armigen Banditen N Spiele durchführen und dabei einen möglichst hohen Gewinn erzielen, gerät man in ein Dilemma: Einerseits muss man alle Arme untersuchen, um ihre Kennzahlen zu schätzen (Exploration), andererseits möchte man möglichst oft den besten Arm betätigen (Exploitation). Im nächsten Kapitel werden dann Algorithmen entwickelt, die versuchen einen Kompromiss zwischen Exploration und Exploitation herzustellen.