Legendre-Transformation

Die freie Energie und die gebundene Energie beim Carnot-Prozess

Am Beispiel des Carnot-Prozesses soll das Verhalten der freien und der gebundenen Energie während eines Umlaufs diskutiert werden. Dies soll die Bedeutung dieser thermodynamischen Potentiale besser verständlich machen; speziell ob und wie sie als Arbeitsfähigkeit beziehungsweise Wärmeinhalt eines Systems interpretiert werden können.

Die freie Energie und die gebundene Energie beim Carnot-Prozess

Veranschaulichung der freien Energie bei einer isochoren Zustandsänderung im TS-Diagramm

Am Beispiel der isochoren Erwärmung werden die Eigenschaften der freien Energie F = U - TS und der gebundenen Energie G = TS erläutert. Speziell wird gezeigt, wie man ihre Veränderung darstellen kann, wenn man vom US-Diagramm zum TS-Diagramm übergeht.

Veranschaulichung der freien Energie bei einer isochoren Zustandsänderung im TS-Diagramm

Eigenschaften der thermodynamischen Potentiale: Die freie Energie

Die freie Energie F = U - TS ist die (negative) Legendre-Transformierte der inneren Energie U, wenn diese als Funktion der extensiven Variablen Entropie S und Volumen V dargestellt wird: U = U(S, V); die Legendre-Transformation wird dabei bezüglich der Variable S berechnet. Es ist dann leicht nachzuweisen, dass die freie Energie ein thermodynamisches Potential ist und dass die Änderung der freien Energie bei isothermen Zustandsänderungen mit der Zufuhr von mechanischer Arbeit übereinstimmt.

Die eindimensionale Legendre-Transformation: Motivation, Definition und einfache Beispiele

Die Legendre-Transformation wird geometrisch motiviert, indem die Menge der Tangenten an den Graphen einer Funktion betrachtet wird. Die formale Definition wird von der Verallgemeinerung, der Legendre-Fenchel-Transformation, abgegrenzt und es wird gezeigt, dass für differenzierbare und konvexe Funktionen beide Transformationen identisch sind. Für einfache Funktionen wird die Legendre-Transformation berechnet und veranschaulicht.