Liste

Erzeugen von dreidimensionalen Graphiken mit scatterplot3d

Das Paket scatterplot3d erleichtert die Darstellung von dreidimensionalen Punktwolken. Es bietet zudem zahlreiche Funktionalitäten, mit denen derartige Plots gehaltvoller gestaltet werden können, wie das Eintragen von zusätzlichen Punkten, Linien und Ebenen oder Konturlinien. An einigen speziellen Anwendungen wird ein Großteil dieser Funktionalitäten vorgestellt.

Die Familie der apply-Funktionen in R Teil 2: Die Verarbeitung mehrerer Listen mit mapply(), Map() und outer()

Die Funktion lapply() ersetzt eine Iteration über die Komponenten einer Liste, wobei auf jede Komponente eine Funktion FUN angewendet wird; die Rückgabewerte werden wieder zu einer Liste zusammengefasst. Entsprechend wird mit mapply() über mehrere Listen iteriert, wobei in jedem Schritt entsprechende Komponenten ausgewählt werden und darauf wird die Funktion FUN angewendet. Die Funktion Map() ist ein Wrapper für mapply(), der die wichtigsten Anwendungsfälle abdeckt. Die meisten Funktionen in R sind vektorisiert, können also nicht nur auf einen Eingabewert, sondern auf einen Vektor angewendet werden. Die Vektorisierung von Funktionen ist ein in R zentrales Konzept, das ein besseres Verständnis der Funktion mapply() liefert. Zuletzt wird die Funktion outer() mit einigen Anwendungen besprochen. Die Funktion outer() besitzt zwei Vektoren (oder Felder) als Eingabewert und baut daraus ein komplexeres Feld auf.

Die Familie der apply-Funktionen in R Teil 1: Verarbeitung von Listen mit lapply(), sapply(), vapply() und rapply()

In der Familie der apply-Funktionen gibt es mehrere Vertreter, mit den über die Elemente einer Liste iteriert werden kann, wobei auf jede Komponente eine Funktion f() angewendet wird. Besprochen werden lapply(), sapply(), vapply() und rapply(). Die Funktion lapply() ist dabei der grundlegende Vertreter, der die bei der Iteration entstehenden Rückgabewerte wieder zu einer Liste zusammensetzt. Dagegen versucht sapply() einen möglichst einfachen Rückgabewert zu erzeugen (Vektor oder Feld). Der Funktion vapply() kann eine Vorlage für den Rückgabewert übergeben werden, so dass man bessere Kontrolle für weitere Berechnungen hat. Mit rapply() können bestimmte Datentypen aus einer Liste selektiert werden und nur auf diese wird die Funktion f() angewendet; zudem wird die Anwendung von f() rekursiv an die Komponenten der Liste weitergereicht.

Dataframes in R: Anwendungen

Nach den grundlegenden Eigenschaften im Kapitel "Dataframes in R: der Datentyp data frame" werden jetzt Anwendungen von Dataframes gezeigt: der Zugriff auf ein Dataframe (auf Spalten, Zeilen, einzelne Elemente oder Teilmengen), Sortierung eines Dataframes, Daten-Aggregation, Umwandlung in eine Matrix sowie das Schreiben eines Dataframes in eine Datei und umgekehrt das Lesen von tabellarischen Daten aus einer Datei.

Dataframes in R: der Datentyp data frame

Der Datentyp Dataframe vereinigt viele Eigenschaften der Datentypen Matrix und Liste und ist in zahlreichen Anwendungen der geeignete Rahmen, um statistische Daten zu speichern und ihre Auswertung vorzubereiten. Der erste Teil über Dataframes zeigt, wie man sie erzeugen und ihre Eigenschaften abfragen kann (Diagnose-Funktionen). Im nächsten Kapitel werden Anwendungen von Dataframes gezeigt.

Listen in R: der Datentyp list

Listen sind in R die grundlegende rekursive Struktur: anders als bei einem Vektor, bei dem alle Komponenten einen identischen Datentyp besitzen müssen, ist für die Komponenten einer Liste ein beliebiger Datentyp zulässig - sie können sogar selber wieder Listen sein. Vorgestellt werden Funktionen zum Erzeugen von Listen, der Zugriff auf die Komponenten einer Liste, Diagnose-Funktionen für Listen und das Attribut names.