Ereignis

Grundbegriffe der Wahrscheinlichkeitsrechnung: Diskrete und stetige Zufallsvariablen

Zufallsvariablen können diskrete oder kontinuierliche Werte annehmen. Die mathematische Beschreibung unterscheidet sich, da die Wahrscheinlichkeiten der Werte der Zufallsvariable entweder mit Folgen oder indirekt über eine Wahrscheinlichkeitsdichte angegeben werden. Diese Beschreibung wird an speziellen Verteilungen demonstriert: diskrete Gleichverteilung, Poisson-Verteilung, kontinuierliche Gleichverteilung, Standard-Normalverteilung.

Grundbegriffe der Wahrscheinlichkeitsrechnung: Die Zufallsvariable

Zufallsvariablen sind die geeignete Begriffsbildung um sowohl Ereignisse als auch deren Wahrscheinlichkeiten treffend zu beschreiben und zu berechnen. In späteren Anwendungen der Wahrscheinlichkeitsrechnung werden Zufallsvariablen ständig eingesetzt. Hier wird zunächst gezeigt, wie Zufallsvariablen mit der Ereignisalgebra und dem Wahrscheinlichkeitsmaß zusammenhängen und sich so nahtlos in den Aufbau der Wahrscheinlichkeitsrechnung einfügen. In den R-Skripten wird gezeigt, wie man Zufallsvariable leicht modellieren kann.

Grundbegriffe der Wahrscheinlichkeitsrechnung: Die Axiome von Kolmogorov

Die fundamentalen Begriffe der Wahrscheinlichkeitsrechnung, nämlich Ereignisalgebra, Wahrscheinlichkeit, Wahrscheinlichkeitsraum und die Axiome von Kolmogorov, werden formuliert. Es werden einige einfache Anwendungen und Skripte für Simulationen von Zufallsexperimenten gezeigt.

Grundbegriffe der Wahrscheinlichkeitsrechnung: Zufallsexperiment und Wahrscheinlichkeit

Die grundlegenden Begriffe der Wahrscheinlichkeitsrechnung werden eingeführt: Zufallsexperiment, Ergebnismenge, Ereignis, Ereignisalgebra, Wahrscheinlichkeit und Wahrscheinlichkeitsraum. Ferner werden Computer-Experimente zum Vergleich der Wahrscheinlichkeit und der relativen Häufigkeit vorgestellt.