Rekursionsanfang

Spezielle Abzählprobleme: Partitionen

Das Abzählproblem, nicht unterscheidbare Kugeln auf nicht unterscheidbare Urnen zu verteilen ist äquivalent zum Problem zu einer ganzen Zahl Z Zerlegung in L Summanden zu finden. Eine derartige Zerlegung wird als Partition bezeichnet. Wie viele Partitionen es gibt, wird für mehrere Fälle untersucht: Die Vertauschung der Reihenfolge zählt (oder zählt nicht) als neue Partition, die Null ist als Summand zugelassen, die Länge der Partition wird nicht festgelegt. Man kann für diese Abzählprobleme zwar Rekursionsformeln angeben, man kann mit einfachen Mitteln aber keine expliziten Formeln angeben, die die Rekursionsformeln lösen.

Spezielle Abzählprobleme: Kombinationen mit Wiederholungen und die Beweismethode Stars and Bars

Kombinationen mit Wiederholungen treten in mehreren Abzählproblemen auf, die zunächst sehr unterschiedlich wirken. Es wird ihre Äquivalenz gezeigt und die Formel hergeleitet, wie man die Anzahl aller Kombinationen mit Wiederholungen berechnet. Dazu verwendet man die Methode Stars and Bars. In den R-Skripten wird ein einfacher Algorithmus gezeigt, wie man die Menge alle Kombinationen mit Wiederholungen rekursiv berechnet.

Lösung von Abzählproblemen durch Rekursion

Als weitere Methode zur Lösung von Abzählproblemen wird die Rekursion vorgestellt. Dies geschieht am Beispiel eines Zahlenspiels, für das der vollständige Spielbaum entwickelt wird. Dieser wirkt zwar sehr unregelmäßig und kann mit den bekannten kombinatorischen Formeln nicht bewältigt werden, aber aufgrund seiner rekursiven Struktur lassen sich Abzählprobleme auf das Aufstellen der Rekursionsformel und der Behandlung des Basisfalls zurückführen.