Die Herleitung der Stirling-Approximation mit der Laplace-Methode
Das asymptotische Verhalten der Fakultät n! wird in sehr guter Näherung durch die Stirling-Approximation beschrieben. Sie wird hier durch die sogenannte Laplace-Methode hergeleitet. Dabei wird die Fakultät mit Hilfe der Gamma-Funktion ausgedrückt; das uneigentliche Integral wird durch geeignete Umformungen und Näherungen berechnet. Die Güte der Approximation wird nicht untersucht, aber es werden alle Rechenschritte erläutert und die Zwischenergebnisse veranschaulicht.