1. Grundbegriffe der Wahrscheinlichkeitsrechnung: Diskrete und stetige Zufallsvariablen

    Zufallsvariablen können diskrete oder kontinuierliche Werte annehmen. Die mathematische Beschreibung unterscheidet sich, da die Wahrscheinlichkeiten der Werte der Zufallsvariable entweder mit Folgen oder indirekt über eine Wahrscheinlichkeitsdichte angegeben werden. Diese Beschreibung wird an speziellen Verteilungen demonstriert: diskrete Gleichverteilung, Poisson-Verteilung, kontinuierliche Gleichverteilung, Standard-Normalverteilung.
  2. Konzentrations-Ungleichungen: Die Tschebyscheff-Ungleichung

    Die Tschebyscheff-Ungleichung als einfachste Konzentrations-Ungleichung wird aus mehreren Perspektiven beleuchtet: Es werden Beispiele für ihre typische Anwendung besprochen; es wird ein direkter Beweis gegeben; es wird gezeigt, dass sie als Spezialfall der verallgemeinerten Markov-Ungleichung aufgefasst werden kann; es wird diskutiert, wie gut die Abschätzung ist, die sie liefert. In den R-Skripten werden die Berechnungen aus den Anwendungsbeispielen ausgeführt, die man ohne Programmierung kaum bewältigen könnte.
  3. Grundbegriffe der Wahrscheinlichkeitsrechnung: Die Zufallsvariable

    Zufallsvariablen sind die geeignete Begriffsbildung um sowohl Ereignisse als auch deren Wahrscheinlichkeiten treffend zu beschreiben und zu berechnen. In späteren Anwendungen der Wahrscheinlichkeitsrechnung werden Zufallsvariablen ständig eingesetzt. Hier wird zunächst gezeigt, wie Zufallsvariablen mit der Ereignisalgebra und dem Wahrscheinlichkeitsmaß zusammenhängen und sich so nahtlos in den Aufbau der Wahrscheinlichkeitsrechnung einfügen. In den R-Skripten wird gezeigt, wie man Zufallsvariable leicht modellieren kann.
  4. Der mehrarmige Bandit (multi-armed bandit): Implementierung eines Simulations-Algorithmus in R

    Ein Algorithmus zur Simulation von N Spielen am k-armigen Banditen (multi-armed bandit) wird in R implementiert. Der Algorithmus erlaubt die Auswahl einer Strategie zur Wahl des nächsten zu spielenden Armes. Als Strategien stehen die im Artikel "Der mehrarmige Bandit (multi-armed bandit): Simulationen mit einfachen Algorithmen vorgestellten Strategien zur Auswahl, es können aber leicht weitere Strategien implementiert und eingefügt werden.
  5. Der mehrarmige Bandit (multi-armed bandit): Simulationen mit einfachen Algorithmen

    Um beim Spiel am mehrarmigen Banditen einen möglichst hohen Gewinn zu erzielen, benötigt man eine Strategie, die einen Kompromiss zwischen Exploration und Exploitation herstellt. Es werden einfache Algorithmen vorgestellt, die dieses Problem lösen und ihre Eigenschaften werden mit Hilfe von Simulationen untersucht.
Durch die Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies einverstanden. Außerdem werden teilweise auch Cookies von Diensten Dritter gesetzt. Genauere Informationen finden Sie in unserer Datenschutzerklärung sowie im Impressum.