1. Eigenschaften von Zufallsvariablen: Die Varianz und die Standardabweichung

    Nach dem Erwartungswert sind die Varianz und die Standardabweichung (als Wurzel der Varianz) die wichtigsten Kennzahlen einer Verteilung. Ist der Erwartungswert ein Maß für die Lage der Verteilung, beschreiben Varianz und Standardabweichung die Streuung der Werte einer Zufallsvariable um den Erwartungswert. Die Definition und Eigenschaften werden besprochen und an zahlreichen Beispielen erläutert.
  2. Eigenschaften von Zufallsvariablen: Der Erwartungswert von diskreten und stetigen Zufallsvariablen

    Der Erwartungswert einer Zufallsvariable ist die wichtigste Kennzahl, um Ergebnisse von Zufallsexperimenten zu beschreiben. Seine Definition und Eigenschaften werden ausführlich erläutert. An zahlreichen Beispielen wird seine Berechnung vorgeführt; dabei werden nebenbei wichtige Wahrscheinlichkeits-Verteilungen vorgestellt.
  3. Konzentrations-Ungleichungen: Die Chernoff-Schranke für die Binomialverteilung

    Die Herleitung der Chernoff-Schranke beruht auf der momentenerzeugenden Funktion. Für den Spezialfall der Binomialverteilung kann die optimale Chernoff-Schranke explizit berechnet werden und es geht außer der Markov-Ungleichung keine weitere Näherung ein. Um die Vorgehensweise bei der Berechnung der Chernoff-Schranke besser verständlich zu machen, werden alle Herleitungsschritte besprochen und mit zahlreichen Diagrammen veranschaulicht.
  4. Wahrscheinlichkeitsverteilungen in R

    Zu den wichtigsten Wahrscheinlichkeitsverteilungen gibt es Funktionen zum Berechnen der Wahrscheinlichkeitsdichte, der Verteilungsfunktion, des p-Quantils und zum Erzeugen von Zufallszahlen. Für ausgewählte Verteilungen (Binomialverteilung, Poisson-Verteilung, kontinuierliche Gleichverteilung und Normalverteilung) werden diese Funktionen vorgestellt. Dabei werden typische Anwendungen aus der Wahrscheinlichkeitsrechnung und Statistik gezeigt, die zugleich einige Eigenschaften dieser Verteilungen illustrieren.
  5. Tabellen in R: der Datentyp table

    Dar Datentyp Tabelle (table) wird verwendet, um Kontingenz-Tabellen zu erzeugen und auszuwerten. Einfachere Anwendungen, um die levels in einem Faktor zu zählen, wurden bereits in den Kapiteln über Faktoren beschrieben.
Durch die Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies einverstanden. Außerdem werden teilweise auch Cookies von Diensten Dritter gesetzt. Genauere Informationen finden Sie in unserer Datenschutzerklärung sowie im Impressum.